LBS logo London experience. World impact.

Search for faculty

Bruce Hardie

Professor of Marketing


BCom MCom (Auckland), MA and PhD (Pennsylvania)

Professor Bruce Hardie joined London Business School in 1994. His primary research and teaching interests focus on customer and marketing analytics.

His early research focused on the development of methods for new product sales forecasting and marketing mix analysis. Much of his current work focuses on the development of tools for customer analytics.

Professor Hardie holds BCom and MCom degrees from the University of Auckland (New Zealand), and MA and PhD degrees from the University of Pennsylvania.

2018

In pursuit of enhanced customer retention management: review, key issues, and future directions

Ascarza E; Neslin SA; Netzer O; Anderson Z; Fader PS; Gupta S; Hardie BGS; Lemmens A; Libai A; Neal D; Provost F; Schrift R

Customer Needs and Solutions 2018 Vol 5:1-2 p 65-81

Some customers would rather leave without saying goodbye

Ascarza E; Netzer O; Hardie B G S

Marketing Science 2018 Vol 37:1 p 54-77

2017

Marketing models for the customer-centric firm

Ascarza E; Fader P S; Hardie B G S

in Wierenga B & Van der Lans, R (eds.), Handbook of marketing decision models, 2nd ed Springer, 2017

Valuing subscription-based businesses using publicly disclosed customer data

McCarthy D M; Fader P S; Hardie B G S

Journal of Marketing 2017 Vol 81:1 p 17-35

2016

Customer-base analysis using repeated cross-sectional summary (RCSS) data

Jerath K; Fader P S; Hardie B G S

European Journal of Operational Research 2016 Vol 249:1 p 340-350

2015

Simple probability models for computing CLV and CE

Fader P S; Hardie B G S

in Kumar V, Denish S (eds), Handbook of research on customer equity in marketing, Edward Elgar Publishers, p 77-100

2014

Stochastic models of buyer behaviour

Fader P S; Hardie B G S; Subrata S

in Winer R A & Neslin S A (eds), The History of Marketing Science, World Scientific Publishing, p 165-205, 2014

2013

A joint model of usage and churn in contractual settings

Ascarza E; Hardie B G S

Marketing Science 2013 Vol 32:4 p 570-590

2012

Consumer learning of new binary attribute importance accounting for priors, bias, and order effects

Chylinski M B; Roberts J H; Hardie B G S

Marketing Science 2012 Vol 31:4 p 549-566

2011

New perspectives on customer ‘death’ using a generalization of the pareto/NBD model

Kinshuk J; Fader P S; Hardie B G S

Marketing Science 2011 February Vol 30:5 p 866-880

2010

Analytics for customer engagement

Bijmolt T H A; Leeflang P S H; Block F; Eisenbeiss M; Hardie B G S; Lemmens A; Saffert P

Journal of Service Research 2010 August Vol 13:3 p 341-356

Customer-base analysis in a discrete-time noncontractual setting

Fader P S; Hardie B G S; Shang J

Marketing Science 2010 November-December Vol 29:6 p 1086-1108

Customer-base valuation in a contractual setting: The perils of ignoring heterogeneity

Fader P S; Hardie B G S

Marketing Science 2010 Vol 29:1 p 85-93

2009

Probability models for customer-base analysis

Fader P S; Hardie B G S

Journal of Interactive Marketing 2009 January Vol 23:1 p 61-69

2007

Estimating CLV using aggregated data: The Tuscan Lifestyles case revisited

Fader P S; Hardie B G S; Jerath K

Journal of Interactive Marketing 2007 Summer Vol 21 p 55-71

How to project customer retention

Fader P S; Hardie B G S

Journal of Interactive Marketing 2007 Winter Vol 21 p 76-90

2006

Modeling customer lifetime value

Gupta S; Hanssens D; Hardie B G S; Kahn W; Kumar V; Lin N; Ravishankar N; Sriram S

Journal of Service Research 2006 November Vol 9 p 139-155

2005

"Counting your customers" the easy way: an alternative to the Pareto/NBD model

Fader P S; Hardie B G S; Lee K L

Marketing Science 2005 Spring Vol 24:2 p 275-286

Bacon with your eggs?: applications of a new bivariate beta-binomial distribution

Danaher P J; Hardie B G S

American Statistician 2005 Nov Vol 59:4 p 282-286

RFM and CLV: using iso-value curves for customer-base analysis

Fader P S; Hardie B G S; Lee K L

Journal of Marketing Research 2005 Nov Vol 42:4 p 415-430

The value of simple models in new product forecasting and customer-base analysis

Fader P S; Hardie B G S

Applied Stochastic Models in Business and Industry 2005 Jul-Oct Vol 21:4/5 p 461-473

2004

A dynamic changepoint model for new product sales forecasting

Fader P S; Hardie B G S; Huang C-Y

Marketing Science 2004 Winter Vol 23 p 50-65

2003

Forecasting new product trial in a controlled test market environment

Fader P S; Hardie B G S; Zeithammer R

Journal of Forecasting 2003 Aug Vol 22:5 p 391-410

2002

A note on an integrated model of customer buying behaviour

Fader P S; Hardie B G S

European Journal of Operational Research 2002 Vol 139:3 p 682-687

Bayesian inference for the negative binomial distribution via polynomial expansions

Bradlow E T; Hardie B G S; Fader P S

Journal of Computational and Graphical Statistics 2002 Vol 11:1 p 189-201

2001

Forecasting repeat sales at CDNOW: a case study

Hardie B G S; Fader P S

Interfaces 2001 May/Jun Vol 31:3 Pt 2 p S94-S107

Marketing-mix variables and the diffusion of successive generations of a technological innovation

Danaher P J; Hardie B G S; Putsis W P

Journal of Marketing Research 2001 Nov Vol 38:4 p 501-514

2000

A note on modeling underreported Poisson counts

Fader P S; Hardie B G S

Journal of Applied Statistics 2000 Vol 27:8 p 953-964

1998

An empirical comparison of new product trial forecasting models

Hardie B G S; Fader P S; Wisniewski M

Journal of Forecasting 1998 Jun-Jul Vol 17 p 209-229

1996

Modeling consumer choice among SKUs

Fader P S; Hardie B G S

Journal of Marketing Research 1996 Nov Vol 33:4 p 442-452

Technology adoption: amplifying vs simplifying innovations

Hardie B G S ; Robertson T S; Ross W T

Marketing Letters 1996 Oct Vol 7:4 p 355-369

1993

Modeling loss aversion and reference dependence effects on brand choice

Hardie B G S; Johnson E J; Fader P S

Marketing Science 1993 Fall Vol 12:4 p 378-394

Research Interests

  • Applied probability models
  • Customer base analysis
  • Customer analytics