Skip to main content

Please enter a keyword and click the arrow to search the site

Technical Note - An Approximate Dynamic Programming Approach to The Incremental Knapsack Problem

Journal

Operations Research

Subject

Management Science and Operations

Authors / Editors

Aouad A;Segev D

Biographies

Publication Year

2022

Abstract

We study the incremental knapsack problem, where one wishes to sequentially pack items into a knapsack whose capacity expands over a finite planning horizon, with the objective of maximizing time-averaged profits. While various approximation algorithms were developed under mitigating structural assumptions, obtaining non-trivial performance guarantees for this problem in its utmost generality has remained an open question thus far. In this paper, we devise a polynomial-time approximation scheme for general instances of the incremental knapsack problem, which is the strongest guarantee possible given existing hardness results. In contrast to earlier work, our algorithmic approach exploits an approximate dynamic programming formulation. Starting with a simple exponentially sized dynamic program, we prove that an appropriate composition of state pruning ideas yields a polynomially sized state space with negligible loss of optimality. The analysis of this formulation synthesizes various techniques, including new problem decompositions, parsimonious counting arguments, and efficient rounding methods, that may be of broader interest.

Keywords

Incremental Knapsack, approximate dynamic programming, PTAS

Available on ECCH

No


Select up to 4 programmes to compare

Select one more to compare
×
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox

×

Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: https://london.edu/my-profile-preferences or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.