Skip to main content

Please enter a keyword and click the arrow to search the site

Staffing call-centers with uncertain demand forecasts: A chance-constraints approach

Journal

Management Science

Subject

Management Science and Operations

Authors / Editors

Gurvich I;Luedtke J;Tezcan T

Publication Year

2010

Abstract

We consider the problem of staffing call centers with multiple customer classes and agent types operating under quality-of-service (QoS) constraints and demand rate uncertainty. We introduce a formulation of the staffing problem that requires that the QoS constraints are met with high probability with respect to the uncertainty in the demand rate. We contrast this chance-constrained formulation with the average-performance constraints that have been used so far in the literature. We then propose a two-step solution for the staffing problem under chance constraints. In the first step, we introduce a random static planning problem (RSPP) and discuss how it can be solved using two different methods. The RSPP provides us with a first-order (or fluid) approximation for the true optimal staffing levels and a staffing frontier. In the second step, we solve a finite number of staffing problems with known arrival rates—the arrival rates on the optimal staffing frontier. Hence, our formulation and solution approach has the important property that it translates the problem with uncertain demand rates to one with known arrival rates. The output of our procedure is a solution that is feasible with respect to the chance constraint and nearly optimal for large call centers.

Keywords

Call centers; Chance-constrained optimization; Queueing

Available on ECCH

No


Select up to 4 programmes to compare

Select one more to compare
×
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox

×

Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: https://london.edu/my-profile-preferences or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.