Skip to main content

Please enter a keyword and click the arrow to search the site

Sparse Classification: A Scalable Discrete Optimization Perspective

Journal

Machine Learning

Subject

Management Science and Operations

Authors / Editors

Bertsimas D;Pauphilet J

Biographies

Publication Year

2021

Abstract

We formulate the sparse classification problem of n samples with p features as a binary convex optimization problem and propose a outer-approximation algorithm to solve it exactly. For sparse logistic regression and sparse SVM, our algorithm finds optimal solutions for n and p in the 10; 000s within minutes. On synthetic data our algorithm achieves perfect support recovery in the large sample regime. Namely, there exists an n0 such that the algorithm takes a long time to find an optimal solution and does not recover the correct support for n < n0, while for n > n0, the algorithm quickly detects all the true features, and does not return any false features. In contrast, while Lasso accurately detects all the true features, it persistently returns incorrect features, even as the number of observations increases. Consequently, on numerous real-world experiments, our outer-approximation algorithms returns sparser classifers while achieving similar predictive accuracy as Lasso. To support our observations, we analyze conditions on the sample size needed to ensure full support recovery in classification. For k-sparse classification, and under some assumptions on the data generating process, we prove that information-theoretic limitations impose n0 < C(2+o2) k log(p-k), for some constant C >0.

Keywords

Classification; Programming; Statistics

Available on ECCH

No


Select up to 4 programmes to compare

Select one more to compare
×
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox

×

Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: https://london.edu/my-profile-preferences or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.