Skip to main content

Please enter a keyword and click the arrow to search the site

On decomposition methods for a class of partially seperable nonlinear programs


Mathematics of Operations Research


Management Science and Operations

Authors / Editors

De Miguel V;Nogales F J


Publication Year



We study two different decomposition algorithms for the general (nonconvex) partially separable nonlinear program (PSP): bilevel decomposition algorithms (BDAs) and Schur interior-point methods (SIPMs). BDAs solve the problem by breaking it into a master problem and a set of independent subproblems, forming a type of bilevel program. SIPMs, on the other hand, apply an interior-point technique to solve the problem in its original (integrated) form, but then use a Schur complement approach to solve the Newton system in a decentralized manner. Our first contribution is to establish a theoretical relationship between these two types of decomposition algorithms. This is a first step toward closing the gap between the incipient local convergence theory of BDAs and the mature local convergence theory of interior-point methods. Our second contribution is to show how SIPMs can be modified to solve problems for which the Schur complement matrix is not invertible in general. The importance of this contribution is that it substantially enlarges the class of problems that can be addressed with SIPMs.


Bilevel programming; Schur complement; Decomposition algorithms

Available on ECCH


Select up to 4 programmes to compare

Select one more to compare
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox


Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.