Skip to main content

Please enter a keyword and click the arrow to search the site

On controlled linea diffusions with delay in a model of optimal advertising under uncertainty with memory effects

Journal

Journal of Optimization Theory and Applications

Subject

Management Science and Operations

Authors / Editors

Savin S;Gozzi F;Marinelli C

Publication Year

2009

Abstract

We consider a class of dynamic advertising problems under uncertainty in the presence of carryover and distributed forgetting effects, generalizing the classical model of Nerlove and Arrow (Economica 29:129–142, 1962). In particular, we allow the dynamics of the product goodwill to depend on its past values, as well as previous advertising levels. Building on previous work (Gozzi and Marinelli in Lect. Notes Pure Appl. Math., vol. 245, pp. 133–148, 2006), the optimal advertising model is formulated as an infinite-dimensional stochastic control problem. We obtain (partial) regularity as well as approximation results for the corresponding value function. Under specific structural assumptions, we study the effects of delays on the value function and optimal strategy. In the absence of carryover effects, since the value function and the optimal advertising policy can be characterized in terms of the solution of the associated HJB equation, we obtain sharper characterizations of the optimal policy.

Available on ECCH

No


Select up to 4 programmes to compare

Select one more to compare
×
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox

×

Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: https://london.edu/my-profile-preferences or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.