Skip to main content

Please enter a keyword and click the arrow to search the site

Greedy-like algorithms for dynamic assortment planning under multinomial logit preferences


Operations Research


Management Science and Operations

Authors / Editors

Aouad A;Levi R;Segev D


Publication Year



We study the joint assortment planning and inventory management problem, where stock-out events elicit dynamic substitution effects, described by the multinomial logit (MNL) choice model. Special cases of this setting have been extensively studied in recent literature, notably the static assortment planning problem. Nevertheless, to our knowledge, the general formulation is not known to admit efficient algorithms with analytical performance guarantees before this work, and most of its computational aspects are still wide open. In this paper, we devise what is, to our knowledge, the first provably good approximation algorithm for dynamic assortment planning under the MNL model. We derive a constant-factor guarantee for a broad class of demand distributions that satisfy the increasing failure rate property. Our algorithm relies on a combination of greedy procedures, where stocking decisions are restricted to specific classes of products and the objective function takes modified forms. We demonstrate that our approach substantially outperforms state-of-the-art heuristic methods in terms of performance and speed, leading to an average revenue gain of 4% to 12% in computational experiments. In the course of establishing our main result, we develop new algorithmic ideas that may be of independent interest. These include weaker notions of submodularity and monotonicity, shown sufficient to obtain constant-factor worst-case guarantees, despite using noisy estimates of the objective function


Inventory management; Dynamic substitution; Approximation algorithms; Submodality; Multinomial logit choice model

Available on ECCH


Select up to 4 programmes to compare

Select one more to compare
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox


Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.