Skip to main content

Please enter a keyword and click the arrow to search the site

Representing Random Utility Choice Models with Neural Networks

Subject

Management Science and Operations

Publishing details

ARXIV

Authors / Editors

Aouad A; Desir A

Biographies

Publication Year

2022

Abstract

Motivated by the successes of deep learning, we propose a class of neural network-based discrete choice models, called RUMnets, which is inspired by the random utility maximization (RUM) framework. This model formulates the agents' random utility function using the sample average approximation (SAA) method. We show that RUMnets sharply approximate the class of RUM discrete choice models: any model derived from random utility maximization has choice probabilities that can be approximated arbitrarily closely by a RUMnet. Reciprocally, any RUMnet is consistent with the RUM principle. We derive an upper bound on the generalization error of RUMnets fitted on choice data, and gain theoretical insights on their ability to predict choices on new, unseen data depending on critical parameters of the dataset and architecture. By leveraging open-source libraries for neural networks, we find that RUMnets outperform other state-of-the-art choice modeling and machine learning methods by a significant margin on two real-world datasets.

Series

ARXIV

Available on ECCH

No


Select up to 4 programmes to compare

Select one more to compare
×
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox