Skip to main content

Please enter a keyword and click the arrow to search the site

Integration of hydrogen and synthetic natural gas within legacy power generation facilities

Journal

Energies

Subject

Management Science and Operations

Publishing details

Authors / Editors

Dominguez-Gonzalez G;Muñoz-Hernandez J;Bunn D;Garcia-Checa C

Biographies

Publication Year

2022

Abstract

Whilst various new technologies for power generation are continuously being evaluated, the owners of almost-new facilities, such as combined-cycle gas turbine (CCGT) plants, remain mo-tivated to adapt these to new circumstances and avoid the balance-sheet financial impairments of underutilization. Not only are the owners reluctant to decommission the legacy CCGT assets, but system operators value the inertia and flexibilities they contribute to a system becoming pre-dominated with renewable generation. This analysis therefore focuses on the reinvestment cases for adapting CCGT to hydrogen (H2), synthetic natural gas (SNG) and/or retrofitted carbon cap-ture and utilization systems (CCUS). Although H2, either by itself or as part of SNG, has been evaluated attractively for longer-term electricity storage, the business case for how it can be part of a hybrid legacy CCGT system has not been analyzed in a market context. This work compares the power to synthetic natural gas to power (PSNGP) adaptation with the simpler and less expensive power to hydrogen to power (P2HP) adaptation. Both the P2HP and PSNGP configurations are effective in terms of decarbonizations. The best results of the feasibility analysis for a UK appli-cation with low CCGT load factors (around 31%) were obtained for 100% H2 (P2HP) in the lower range of wholesale electricity prices (less than 178 GBP/MWh), but in the higher range of prices, it would be preferable to use the PSNGP configuration with a low proportion of SNG (25%). If the CCGT load factor increased to 55% (the medium scenario), the breakeven profitability point be-tween P2HP and PSNGP decreased to a market price of 145 GBP/MWh. Alternatively, with the higher load factors (above 77%), satisfactory results were obtained for PSNGP using 50% SNG if with market prices above 185 GBP/MWh.

Keywords

power to gas; power to hydrogen to power; synthetic natural gas; power to synthetic natural gas; CCGT

Publication Notes

MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Available on ECCH

No


Select up to 4 programmes to compare

Select one more to compare
×
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox

×

Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: https://london.edu/my-profile-preferences or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.