Skip to main content

Please enter a keyword and click the arrow to search the site

A stochastic multiple leader Stackelberg model: Analysis, computation, and application

Journal

Operations Research

Subject

Management Science and Operations

Authors / Editors

DeMiguel V;Xu H

Biographies

Publication Year

2009

Abstract

We study an oligopoly consisting of M leaders and N followers that supply a homogeneous product (or service) noncooperatively. Leaders choose their supply levels first, knowing the demand function only in distribution. Followers make their decisions after observing the leader supply levels and the realized demand function. We term the resulting equilibrium a stochastic multiple-leader Stackelberg-Nash-Cournot (SMS) equilibrium. We show the existence and uniqueness of SMS equilibrium under mild assumptions. We also propose a computational approach to find the equilibrium based on the sample average approximation method and analyze its rate of convergence. Finally, we apply this framework to model competition in the telecommunication industry.

Keywords

Programming; Noncooperative games/group decisions; Stackelberg game; Equilibrium existence; Uniqueness; Sample average approximation

Available on ECCH

No


Select up to 4 programmes to compare

Select one more to compare
×
subscribe_image_desktop 5949B9BFE33243D782D1C7A17E3345D0

Sign up to receive our latest news and business thinking direct to your inbox

×

Sign up to receive our latest course information and business thinking

Leave your details above if you would like to receive emails containing the latest thought leadership, invitations to events and news about courses that could enhance your career. If you would prefer not to receive our emails, you can still access the case study by clicking the button below. You can opt-out of receiving our emails at any time by visiting: https://london.edu/my-profile-preferences or by unsubscribing through the link provided in our emails. View our Privacy Policy for more information on your rights.